网贷百科
网贷百科 >>所属分类 >> 网贷名词    金融科技   

机器学习

机器学习
机器学习

目录

[显示全部]

定义 编辑本段 回目录

机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。是在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

简单的来讲,我们给计算机足量的数据,这些数据可以是已标注过判定结果的(监督学习),也可以是没有经过标注的(无监督学习),计算机从这些数据中抽象出模型,也即可以看做发现这些数据的之间的规律与联系,然后当训练完成后,给予其训练集之外的数据(测试集),计算机就能『举一反三』,根据学习训练样本所得到的模型,去预测测试样本的相关属性。我们根据训练样本以及所需解决问题的不同选择恰当的机器学习算法,建立恰当的模型,以求得到最好的预测效果。

机器学习是一种让计算机在没有事先明确的编程的情况下做出正确反应的科学。在过去的十年中,机器学习已经给我们在自动驾驶汽车,实用语音识别,有效的网络搜索,以及提高人类基因组的认识方面带来大量帮助。今天的机器学习是如此普遍,你可能使用它每天几十次却不了解它。许多研究人员也认为这是最好的达到真正的“人工智能”的方法。

机器学习的兴起 编辑本段 回目录

在90年代初,人们开始意识到一种可以更有效地构建模式识别算法的方法,那就是用数据(可以通过廉价劳动力采集获得)去替换专家(具有很多图像方面知识的人)。因此,我们搜集大量的人脸和非人脸图像,再选择一个算法,然后冲着咖啡、晒着太阳,等着计算机完成对这些图像的学习,这就是机器学习的思想。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。

在21世纪中期,机器学习成为了计算机科学领域一个重要的研究课题,计算机科学家们开始将这些想法应用到更大范围的问题上,不再限于识别字符、识别猫和狗或者识别图像中的某个目标等等这些问题。研究人员开始将机器学习应用到机器人(强化学习,操控,行动规划,抓取)、基因数据的分析和金融市场的预测中。另外,机器学习与图论的联姻也成就了一个新的课题---图模型。每一个机器人专家都“无奈地”成为了机器学习专家,同时,机器学习也迅速成为了众人渴望的必备技能之一。然而,“机器学习”这个概念对底层算法只字未提。我们已经看到凸优化、核方法、支持向量机和Boosting算法等都有各自辉煌的时期。再加上一些人工设计的特征,那在机器学习领域,我们就有了很多的方法,很多不同的思想流派,

分类 编辑本段 回目录

根据吴恩达博士的分法,将机器学习分为四类:监督学习、无监督学习、强化学习、迁移学习。

监督学习
是利用已知类别的样本(即有标记的样本labeledsample,已知其相应的类别),调整分类器的参数,训练得到一个最优模型,使其达到所要求性能,再利用这个训练后的模型,将所有的输入映射为相应的输出,对输出进行简单的判断,从而实现分类的目的,这样,即可以对未知数据进行分类。

通俗的来讲,我们给计算机一堆选择题(训练样本),并同时提供了它们的标准答案,计算机努力调整自己的模型参数,希望自己推测的答案与标准答案越一致越好,使计算机学会怎么做这类题。然后再让计算机去帮我们做没有提供答案的选择题(测试样本)。

无监督学习
实现没有有标记的、已经分类好的样本,需要我们直接对输入数据集进行建模,例如聚类,最直接的例子就是我们常说的『人以群分,物以类聚』。我们只需要把相似度高的东西放在一起,对于新来的样本,计算相似度后,按照相似程度进行归类就好。

通俗的来讲,我们给计算机一堆选择题(训练样本),但是不提供标准答案,计算机尝试分析这些题目之间的关系,对题目进行分类,计算机也不知道这几堆题的答案分别是什么,但计算机认为每一个类别内的题的答案应该是相同的。

强化学习
所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统RLS(reinforcementlearningsystem)如何去产生正确的动作。

通俗的来讲,我们给计算机一堆选择题(训练样本),但是不提供标准答案,计算机尝试去做这些题,我们作为老师批改计算机做的对不对,对的越多,奖励越多,则计算机努力调整自己的模型参数,希望自己推测的答案能够得到更多的奖励。不严谨的讲,可以理解为先无监督后有监督学习。

迁移学习
考虑到大部分数据或任务是存在相关性的,所以通过transferlearning我们可以将已经学到的parameter分享给新模型从而加快并优化模型的学习不用像之前那样learnfromzero。把已学训练好的模型参数迁移到新的模型来帮助新模型训练数据集。

为什么要用机器学习解决问题? 编辑本段 回目录

目前处于大数据时代,到处都有成T成P的数据,简单规则处理难以发挥这些数据的价值;廉价的高性能计算,使得基于大规模数据的学习时间和代价降低;廉价的大规模存储,使得能够更快地和代价更小地处理大规模数据;存在大量高价值的问题,使得花大量精力用机器学习解决问题后,能获得丰厚收益。

机器学习应该用于解决什么问题? 编辑本段 回目录

目标问题需要价值巨大,因为机器学习解决问题有一定的代价;
目标问题有大量数据可用,有大量数据才能使机器学习比较好地解决问题(相对于简单规则或人工);
目标问题由多种因素(特征)决定,机器学习解决问题的优势才能体现(相对于简单规则或人工);
目标问题需要持续优化,因为机器学习可以基于数据自我学习和迭代,持续地发挥价值。

深度学习vs机器学习vs模式识别 编辑本段 回目录

模式识别(Pattern recognition)、机器学习(machine learning)和深度学习(deep learning)代表三种不同的思想流派。模式识别是最古老的(作为一个术语而言,可以说是很过时的)。机器学习是最基础的(当下初创公司和研究实验室的热点领域之一)。而深度学习是非常崭新和有影响力的前沿领域,我们甚至不会去思考后深度学习时代。深度学习是机器学习的一种,是一种『抽象出的模型』在结构上比较特殊(有深度且可以堆叠,比如各类神经网络)的机器学习方法。
1)机器学习就像是一个真正的冠军一样持续昂首而上;
2)模式识别一开始主要是作为机器学习的代名词;
3)模式识别正在慢慢没落和消亡;
4)深度学习是个崭新的和快速攀升的领域。
机器学习3
机器学习3
参考资料
[1].  整理:深度学习 vs 机器学习 vs 模式识别   http://www.csdn.net/article/2015-03-24/2824301
[2].  实例详解机器学习如何解决问题   https://tech.meituan.com/mt-mlinaction-how-to-ml.html
[3].  浅谈机器学习基础(上)   http://www.jianshu.com/p/ed9ae5385b89
[4].  机器学习算法一览   http://www.sohu.com/a/54145271_308467
[5].  京东郑志彤:如何利用机器学习优化数亿条商品数据   http://www.datayuan.cn/article/13692.htm
[6].  史上最全机器学习资源整理   https://zhuanlan.zhihu.com/p/26876504
[7].  Google 又一次领跑人工智能,已成为机器学习开源届老大   http://www.pingwest.com/jeff-dean-cloud-next-tensorflow/

附件列表


词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

词条信息

网贷之家洋洋
网贷之家洋洋
超级管理员
最近编辑者 发短消息   
  • 浏览次数: 1443 次
  • 编辑次数: 1次 历史版本
  • 更新时间: 2017-09-26

相关词条

关注我们

微信公众号wdzj-official